Additives…food fortification…

Nutritional additives – fortification

Fortification is the practice of adding micronutrients to food products. Directly to the product or to the animal feed that will therefore boost the content of the meat (or other animal products) as a consequence. The practice began in the West in the 1920’s with the USA ‘fortifying’ salt with iodine, then in the 1930’s and 40’s they began the mandatory addition of vitamin D to milk and various vitamin B’s to flour. The UK followed suit with the mandatory fortification of flour with calcium, iron, and B vitamins thiamine (1) and niacin (3) – none of which are required subsequently to be listed in the ingredients list. Similarly margarine is fortified with vitamins D and A. The idea was to add fortifying micronutrients to mass consumed products (bread, water, salt etc.) as a mass public health benefit when fears were that these nutritional elements were lacking in the general national diet (or within deemed vulnerable groups i.e. ‘poor people’).

The FDF (Food and Drink Federation) gives three reasons for fortification – restoration, substitution and enhancement.

Restoration – the micronutrients are added back to white and brown flour (not whole grain) because they are contained in the bran that is removed during the milling and refining processes.

Substitution – margarine has added vitamins to give it the similar levels to that of butter allowing for an alternative product with similar nutritional value.

Enhancement – and this must be revealed on the product label – many breakfast cereals have micronutrients added to them by the manufacturers to increase commercial value.

Vitamin D fortification is currently much discussed as the natural food sources are few and the risk from sun damage is of increasing concern to many. There has been much talk of the addition of folic acid into a variety of foods (the USA already does this) as it is often recommended as a supplement to certain sections of the population (pregnant women or those planning pregnancy in particular). Commonly fortified foods include breakfast cereals, soya milk, infant formula milks and many baby foods. However, it is this very ‘blanket delivery’ that the pressure groups, against such ideas, contest.

The supporters of fortified foods claim they can play an important role in a healthy balanced diet and provide the opportunity for easy and consistent intake, as opposed to supplements that might be more randomly taken, and perhaps not at correctly metered delivery levels. Strict regulations control the additives both in the UK and overall by the EU. The fortification process can therefore be used to safely deliver various nutrients to the groups that need them without them needing to change their eating patterns and without further expense to the consumer. Developing countries have had huge success with these policies and, in the UK, successful examples that are sited, as support for the system, are the decrease in key nutrient deficiency in women (folate, iron, vitamins D and B2 etc.), the eradication of iodine deficiency (provided through dairy foods and credited to the sterilisation process the cow’s teats go through), and the benefits to vegetarian and other specific diets groups of the fortification of foods to compensate for and/or enhance them to reclaim any potential short fall through the consumption of only plant sources.

The official governing bodies claim these fortifications have made huge differences to the rates of common deficiencies, however, pressure groups against the fortification criticise the lack of review of these laws (not reviewed since 1981) claiming that they are not relevant as the national diet has changed hugely since their introduction (the war years that triggered the inclusion of calcium, for instance, were times of low dairy intake compared to now when the intake is high). These pressure groups also say that the milling process damages higher levels of nutrients than the industry claims and replacement vitamins are not as effective**, and certainly not as natural, as the original the grains contained. Further criticism is that many manufacturers are being accused of using fortification as a way to promote and entice the buying of their processed foods which is in turn increasing the consumers intake of sugars, fats and salt.

**Noted experts have pointed out that added elements such as ascorbic acid, retinoic acid and types of tocopherol (this means added elements labelled as vitamin C, vitamin A or vitamin E) are not the actual vitamin at all but just a lab created isolation of them (synthetic versions needed to replace the naturally occurring versions lost during processing – especially vitamin C which is destroyed by heat). The essential theory being that vitamins are complex compounds that need to work within a set of multi level parameters and so creating an individual molecular compound from them might well work as a preservative, antioxidants etc. but does not therefore consequently also work within the body as a fully fledged vitamin. I.e. you’re getting the vitamin just not any benefit. The American company ‘Real C’ use the analogy: ‘If you compare vitamin C to an egg, ascorbic acid would be just the egg shell with nothing inside’.

Hmmm…think on! Another reason to avoid fruit juice that isn’t freshly squeezed, right? What?!?…Er, please have you learned nothing?!? The other reason is….? That’s right…! Evil sugar (fructose)…

Additives…antioxidants…

Antioxidants E – numbers from 300-399

When foods are exposed to oxygen they begin to break down and decay (oxidation) and this causes discolouration, rancidity and can change/destroy the nutritional value of the item (e.g. they are used to prevent vitamins combining with the air and being destroyed). Antioxidant additives are used to stop or delay these processes. Foods made using fats or oils are likely to contain antioxidants too even if they are low in fat, as they help prevent decomposition especially when unsaturated fats are involved. The decomposing fat reacts with the oxygen creating the release of peroxides which we know by that characteristic rancid fat smell. Grim…

Many processed and prepackaged products contain an antioxidant; a majority contains citric acid (although vitamin C** (ascorbic acid/E300) is one of the most widely used). Citric acid (which occurs naturally in fruits such as lemons) is used extensively to prevent discolouration, help increase the antioxidant effects of other substances and, in some cases, help regulate the PH balance (marmalade, jellies etc). Ascorbic acid is used to prevent discolouration but largely to replace vitamin C**, or add it back in to, any products where it might have been lost in processing or needed for an extra vitamin boost to the product (fruit juices etc. especially orange juice).

**However, this is contentious (isn’t everything?!) as many noted experts have pointed out that added elements such as ascorbic acid, retinoic acid and types of tocopherol (…er…sorry getting carried away (showing off more like?!?) I mean, added elements labelled as vitamin C, vitamin A or vitamin E) are not the actual vitamin at all but just a lab created isolation of them (synthetic versions needed to replace the naturally occurring versions lost during processing – especially vitamin C which is destroyed by heat). The essential theory being that vitamins are complex compounds that need to work within a set of multi level parameters and so creating an individual molecular compound from them might well work as a preservative, antioxidants etc. but does not therefore consequently also work within the body as a fully fledged vitamin. I.e. you’re getting the vitamin just not any benefit. The American company ‘Real C’ use the analogy: ‘If you compare Vitamin C to an egg, ascorbic acid would be just the egg shell with nothing inside’. Hmmm…

There are only a few available to producers in the EU and the most popular/frequently used in processed foods are:

  • Ascorbic acid (vitamin C/E300)
  • Citric acid (E330)
  • BHA (butylated hydroxyanisole/E320)
  • Tocopherols (vitamin E group/E306-309)

BHA and BHT are considered safe in the small doses used by the food industry (for the protection of fats and oils in foods) as they perform better at high temperatures than their natural equivalent vitamin E, but they remain contentious to pressure groups.

Synthetic and natural versions are often used in combination as this can increase their effectiveness. The arguments for the inclusion of antioxidants extend past their usefulness for food preservation etc., but to their reported use in the body for fighting free radicals. These ‘unpaired’ electrons are a danger as they ‘attack’ other molecules to gain a pairing. Antioxidants, vitamin C and vitamin E especially, stabilize these electrons by ‘donating’ one of theirs and as they are stable in either state (paired or unpaired) they do not become a free radical themselves. Increasingly, however, the results from major clinical trials are claiming that too many antioxidants in the body can be dangerous. A good intake is found in balanced, varied diets with fruit and vegetables, but the imbalance forms when the ‘added’ antioxidants are also factored in from processed and fortified foods. Some of these research reports are arguing that some antioxidants do indeed become, at least temporarily, radicals as they are only neuralised by another member of the antioxidant team. Again, this supports the need for a balanced diet of varied antioxidants to ensure there is no imbalance in the levels of a particular antioxidant, which might leave the body vulnerable without enough other antioxidants to restore the balance. Think on…

MAP or EMAP (Modified Atmospheric Packaging or Equilibrium Modified Atmospheric Packaging) are further examples of antioxidant additives at work. The process essentially replaces the oxygen within the sealed packaging (meats, seafood, crisps, salad bags etc.) with higher levels of CO2 (anti-bacterial and anti fungal) and Nitrogen (inert gas used as a filler) and used extensively to prevent further ripening or spoilage and discolouring.